From wikipedia
By definition, the first two Fibonacci numbers are 0 and 1, and each remaining number is the sum of the previous two. Some sources omit the initial 0, instead beginning the sequence with two 1s.
In mathematical terms, the sequence F_n of Fibonacci numbers is defined by the recurrence relation
F_n = F_n-1 + F_n-2
with seed values: F_0 = 0, F_1 = 1
Then the sequence is
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, ...
Fibonacci sequences appear in biological settings, in two consecutive Fibonacci numbers, such as branching in trees, arrangement of leaves on a stem, the fruitlets of a pineapple, the flowering of artichoke, an uncurling fern and the arrangement of a pine cone. In addition, numerous poorly substantiated claims of Fibonacci numbers or golden sections in nature are found in popular sources, e.g. relating to the breeding of rabbits, the spirals of shells, and the curve of waves. The Fibonacci numbers are also found in the family tree of honeybees.
No comments:
Post a Comment